
1

Coarse Grain Reconfigurable Architectures
Reiner Hartenstein (embedded tutorial)

CS Dept. (Informatik), University of Kaiserslautern
http://www.fpl.uni-kl.de reiner@hartenstein.de

Abstract. The paper gives a brief survey over a decade of
R&D on coarse grain reconfigurable hardware and related
compilation techniques and points out its significance to
the emerging discipline of reconfigurable computing.

1. Introduction
Rapidly increasing attendance [1] of conferences on re-

configurable computing and the adoption of this topic area by
congresses like ASP-DAC, DAC, DATE, ISCAS, SPIE, and
others indicate, that reconfigurable platforms are heading from
niche to mainstream, bridging the gap between ASICs and
microprocessors (fig. 2). It’s time to revisit R&D results: the
goal of this paper. (On some projects mentioned we have only
incomplete or no information on the status of implementation.)

2. Coarse Grained Reconfigurable Architectures

parallelism. and encourages nearest neighbour (NN) links
between adjacent PEs (NN or 4NN: links to 4 sides {east.
west. north, south}, or, 8NN: NN-links to 8 sides {east, north-
east, north, north-west, west, south-west, south, south-east},
like in CHESS array). Typically, longer lines are added with
different lengths for connections over distances larger than 1.

DP-FPGA (Datapath FPGA) [3] has been introduced to
implement regularly structured datapaths. It is a FPGA-like
mixed fine and coarse grained architecture with 1 and 4 bits.
Its fabric includes 3 component types: control logic, the
datapath, and memory. The datapath block consists of 4 bit-
slices: each bit-slice with a lookup table, a carry chain and a
four-bit register. DP-FPGA provides separate routing
resources for data (horizontal, 4 bits wide) and control signals
(vertical, single bit). A third resource is the shift block to
support single-bit or multi bit shifts and irregularities.

Using FPGAs as accelerator platforms is not subject of this
paper. In contrast to FPGA use (fine grain reconfigurable) the
area of Reconfigurable Computing mostly stresses the use of
coarse grain reconfigurable arrays (RAs) with pathwidths greater

The KressArray is primarily a mesh
of rDPUs physically connected through
wiring by abutment: no extra routing
areas needed.. In 1995 it has been

flexibility

micro-
processor

Fig. 2: Bridg-
ing the gap.

than 1 bit, because fine-grained architectures are much less
efficient because of a huge routing area overhead and poor
routability [2]. Since computational datapaths have regular
structure, full custom designs of reconfigurable datapath units
(rDPUs) can be drastically more area-efficient, than by
assembling the FPGA way from single-bit CLBs. Coarse-grained
architectures provide operator level CFBs, word level datapaths,

published [4] as “rDPA” (reconfigur-
able DataPath Array). “ KressArray”
has been coined later. The KressArray
is a super-systolic array (generalization
of the systolic array: fig. 4) which is
achieved by DPSS (see § „DPSS“). Its
interconnect fabric distinguishes 3

reconfigurable
computing

ASIC

performance

and powerful and very area-efficient datapath routing switches.

A major benefit is the massive reduction of configuration
memory and configuration time, as well as drastic complexity
reduction of the P&R (placement and routing) problem. Several
architectures will be briefly outlined (also see figure 1). Some
of them introduce multi-granular solutions, where more
coarse granularity can be achieved by bundling of resources,
such as e. g. 4 ALUs of 4 bits each to obtain a 16 bit ALU.

2.1 Primarily Mesh-Based Architectures
Mesh-based architectures arrange their PEs in a rectangular

2-D array with horizontal and vertical connections which
supports rich communication resources for efficient

physical levels: multiple unidirectional and/or bidirectional NN
links (fig. 3), full length or segmented column or row backbuses, a
single global bus reaching all rDPUs (also for configuration). Each
rDPU can serve for routing only, as an operator, or, an operator
with extra routing paths. The 2nd and 3rd level is layouted over the
cell: wiring by abutment capability is not affected.

A first 32 bit KressArray included an additional control unit for
the MoM-3 [5] Xputer [6] [7] [8] with rDPUs supporting all C
language operators. With the new Xplorer environment [9] rDPUs
also support any other operator repertoires including branching,
while loops and do-while loops. I/O data streams from and to the
array can be transferred by global bus, array edge ports, or ports of
other rDPUs (addressed individually by an address generator).

Project first
publ. Source Architecture Granularity Fabrics Mapping

intended target
application

PADDI 1990 [24] crossbar 16 bit central crossbar routing DSP

PADDI-2 1993 [26] crossbar 16 bit multiple crossbar routing DSP and others

DP-FPGA 1994 [3] 2-D array 1 & 4 bit, multi-granular inhomogenous routing channels switchbox routing regular datapaths

KressArray 1995 [4] [9] 2-D mesh family: select pathwidth multiple NN & bus segments (co-)compilation (adaptable)

Colt 1996 [10] 2-D array 1 & 16 bit inhomogenous (sophisticated) run time reconfiguration highly dynamic reconfig.

RaPID 1996 [21] 1-D array 16 bit segmented buses channel routing pipelining

Matrix 1996 [12] 2-D mesh 8 bit, multi-granular 8NN, length 4 & global lines multi-length general purpose

RAW 1997 [14] 2-D mesh 8 bit, multi-granular 8NN switched connections switchbox rout experimental

Garp 1997 [13] 2-D mesh 2 bit global & semi-global lines heuristic routing loop acceleration

Pleiades 1997 [27] mesh / crossbar multi-granular multiple segmented crossbar switchbox routing multimedia

PipeRench 1998 [23] 1-D array 128 bit (sophisticated) scheduling pipelining

REMARC 1998 [15] 2-D mesh 16 bit NN & full length buses (informationnotavailable) multimedia

MorphoSys 1999 [16] 2-D mesh 16 bit NN, length 2 & 3 global lines manual P&R (not disclosed)

CHESS 1999 [17] hexagon mesh 4 bit, multi-granular 8NN and buses JHDL compilation multimedia

DReAM 2000 [18] 2-D array 8 &16 bit NN, segmented buses co-compilation next generation wireless

Chameleon 2000 [19] 2-D array 32 bit (not disclosed) co-compilation tele- & datacommunication

MorphICs 2000 [20] 2-D array (not disclosed) (not disclosed) (not disclosed) next generation wireless

Fig. 1: Summary of the technical details of the different coarse-grained reconfigurable architectures; Note: NN stands for “nearest neighbour”.

http://www.fpl.uni-kl.de/
http://www.fpl.uni-kl.de/
http://www.fpl.uni-kl.de/

2

Although KressArrays are dynamically partially configurable,
applications tried out so far did not make use of it.

The KressArray Family. Supported by an application and
development tool and platform architecture space explorer
(PSE) environment the basic principles of the KressArray
define an entire family of KressArrays covering a wide but
generic variety of interconnect resources and functional
resources. A later version of this PDE environment, called
(see paragraph “ Xplorer,”), supports the rapid creation of RA
and rPDU architectures optimized for a particular application
domain (like e. g. image processing, multimedia, or others),
and rapid mapping of applications onto any RA of this family.

Colt [10] combines concepts from FPGAs

array

applications

pipeline
properties

mapping

scheduling
(data stream
formation) shape resources

systolic
array

regular data
dependency

linear
only

uniform
only

linear projection or
algebraic synthesis

super-
systolic

RA

no restrictions

simulated annealing,
genetic morphing, or
other P&R algorithm

(e.g. force-directed)
scheduling
algorithm

Fig. 4: Pipelined datapath arrays (pipe networks).

provides possible flow control as a backup dynamic support, if the
compiler should fail to find a static schedule.

REMARC (Reconfigurable Multimedia Array Coprocessor)
and data flow computing. It’s a 16 bit pipenet
[11] and relies highly on runtime
reconfiguration using wormhole routing.
Hereby, the data stream headers hold
configuration data for routing and the
functionality of all PEs encountered. Colt has a
mesh of 16 bit IFUs (Interconnected Functional
Units), a crossbar switch, an integer multiplier,

16 8 32
24

rDPU

2

Fig. 3: KressArray

NN ports examples.

[15], a reconfigurable accelerator tightly coupled to a MIPS-II RISC
processor, consists of an 8 by 8 array of 16 bit “nanoprocessors” with
memory, attached to a global control unit. The communication
resources consist of nanoprocessors NN connections and additional
32 bit horizontal and vertical buses which also allow broadcast
to processors in the same row or column respectively, or, to
broadcast a global program counter value each cycle to all
nanoprocessors, also to support SIMD operations.

and six data ports. Each IFU features an ALU, a barrel shifter to
support multiplication and floating point, a decision unit for flow
branching, and optional delay units for pipeline synchronization.

MATRIX [12] (Multiple Alu architecture with Reconfigur-
able Interconnect eXperiment) is a multi-granular array of 8-bit
BFUs (Basic Functional Units) with procedurally programmable
microprocessor core including ALU, multiplier, 256 word data and
instruction memory and a controller which can generate local
control signals from ALU output by a pattern matcher, a reduction
network, or, half a NOR PLA. With these features, a BFU can
serve as instruction memory, data memory, register-file and ALU,
or independent ALU function. Instructions may be routed over the
array to several ALUs. The routing fabric provides 3 levels of 8-bit
buses: 8 nearest neighbour (8NN) and 4 second-nearest neighbour
connections, bypass connections of length 4, and global lines.

The Garp Architecture [13] resembles an FPGA and
comes with a MIPS-II-like host and, for acceleration of
specific loops or subroutines, a 32 by 24 RA of LUT-based 2
bit PEs. Basic unit of its primarily mesh-based architecture is a
row of 32 PEs, a reconfigurable ALU. The host has instruction
set extensions to configure and control the RA. Array
execution is initialized by the number of clock cycles to do.
Host and RA share the same memory hierarchy. Memory
accesses can be initiated by the RA, but only through the
central 16 columns. The blocks in the leftmost column are
dedicated controllers for interfacing. For fast reconfigurations,
the RA features a distributed cache with depth 4, which stores
the least recently used configurations. The routing architecture

MorphoSys (Morphoing System [16]) has a MIPS-like
“ TinyRISC” processor with extended instruction set, a mesh-
connected 8 by 8 RA, a frame buffer for intermediate data,
context memory, and DMA controller. The RA is divided into
four quadrants of 4 by 4 16 bit RCs each, featuring ALU,
multiplier, shifter, register file, and a 32 bit context register for
storing the configuration word. The interconnect network
features 3 layers: 4 NN ports, links of distance 2, and, inter-
quadrant buses spanning the whole array. TinyRISC extra
DMA instructions initiate data transfers between the main
memory and the “frame buffer” internal data memory for
blocks of intermediate results, 128 by 16 bytes in total..

The CHESS Array. The CHESS hexagonal array [17]
features a chessboard-like floorplan with interleaved rows of
alternating ALU / switchbox sequence (figure 5). Embedded
RAM areas support high memory requirements. Switchboxes
can be converted to 16 word by 4 bit RAMs if needed. RAMs
within switchboxes can also be used as a 4-input, 4-output
LUT. The interconnect fabrics of CHESS has segmented four-
bit buses of different length. There are 16 buses in each row
and column, 4 buses for local connections spanning one
switchbox, 4 buses of length 2, and 2 buses of length 4, 8 and
16 respectively. To avoid routing congestion, the array
features also embedded 256 word by 8 bit block RAMs. An
ALU data output may feed the configuration input of another
ALU, so that its functionality can be changed on a cycle-per-
cycle basis at runtime without uploading. However, partial
configuration by uploading is not possible.

includes 2 bit horizontal and vertical lines of different length,
segmented in a non-uniform way: short horizontal segments
spanning 11 blocks, long horizontals spanning the whole
array, and different length vertical segments.

RAW: Reconfigurable Architecture Workstation [14] pro-
vides a RISC multi processor architecture composed of NN-
connected 32-bit modified MIPS R2000 microprocessor tiles
with ALU, 6-stage pipeline, floating point unit, controller,
register file of 32 general purpose and 16 floating point registers,
program counter, and local cached data memory and 32 Kilobyte

ALU

ALU

ALU

ALU

ALU

ALU

ALU

Embedded

RAM

SRAM instruction memory. The prototype chip features 16 tiles
arranged in a 4 by 4 array. Early concepts [14] having been
abandoned included also configurable logic to allow customized

ALU ALU

ALU Embedded
RAM

instructions. RAW provides both a static (determined at compile-
time) and a dynamic network (determined at run-time: wormhole
routing for the data forwarding). Since the processors lack hardware
for register renaming, dynamic instruction issuing or caching (like in
superscalar processors), statically scheduled instruction streams are
generated by the compiler, thus moving the responsibility for all
dynamic issues to the development software. However, RAW

Fig. 5: CHESS array hexagon floor plan.

The DReAM Array (Dynamically Reconfigurable Architecture
for Mobile Systems [18]) for next generation wireless
communication, is a 0.35 µm CMOS standard cell design
fabricated by Mietec/Alcatel. Each RPU consists of: 2
dynamically reconfigurable 8-bit Reconfigurable Arithmetic
Processing (RAP) units, 2 barrel shifters, a controller, two 16 by

3

8-bit dual port RAMs (used as LUT or FIFO), and, a
Communication Protocol Controller. The RPU array fabric uses
NN ports and global buses segmentable by switching boxes.

Industrial RA Platforms. Chameleon Systems offers a
reconfigurable platform for telecommunications and data
communications [19], with a 32 bit RISC core as a host,
connected to a RA fabric with 108 DPUs (84 32-bit ALUs and
24 16-bit multipliers), arranged as 4 slices by 3 tiles à 7 ALUs
and 2 multipliers each, including an 8 word instruction
memory for each DPU and 8 kBytes of local memory for each
slice. Also MorphICs mentions its RA, but without details [20].

2.2 Architectures Based on Linear Arrays
Some RAs are based on one or several linear arrays,

typically also with NN connect, aiming at mapping pipelines
onto it. If the pipes have forks, which otherwise would require a
2-D realization, additional routing resources are needed, like
longer lines spanning the whole or a part of the array, often
being segmented. Two RAs have linear array structure. RaPiD
[21] provides different computing resources, like ALUs, RAMs,
multipliers, and registers, but irregularly distributed. While
RaPiD uses mostly static reconfiguration, PipeRench relies on
dynamic reconfiguration, allowing the reconfiguration of a PE
in each execution cycle. Besides the mostly unidirectional NN
connects, it provides also a global bus.

RaPiD: The Reconfigurable Pipelined Datapath (RaPiD)
[21] aims at speed-up of highly regular, computation-intensive
tasks by deep pipelines on its 1-D RA. RaPiD-1 features 15
DPUs of 8 bit with integer multiplier (32 bit output), 3 integer
ALUs, 6 general-purpose datapath registers and 3 local 32 word
memories, all 16 bits wide. ALUs can be chained. Each
memory has a special datapath register with an incrementing
feedback path. To implement I/O streams RaPiD includes a
stream generator with address generators, optimized for nested
loop structures, associated with FIFOs. The address sequences
for the generators are determined at compile-time. RaPiD’s
routing and configuration architecture consists of several
parallel segmented 16 bit buses, which span the whole array.
The length of the bus segments varies by tracks. In some tracks,
adjacent bus segments can be merged. The sophisticated
interconnect fabric cannot be detailed here.

PipeRench [23], an accelerator for pipelined applications,
provides several reconfigurable pipeline stages (“stripes”) and
relies on fast partial dynamic pipeline reconfiguration and run time
scheduling of configuration streams and data streams. It has a 256
by 1024 bit configuration memory, a state memory (used to save
the current register contents of a stripe), an address translation
table (ATT), four data controllers, a memory bus controller and a
configuration controller. The reconfigurable fabric of the
PipeRench allows the configuration of a pipeline stage in every
cycle, while concurrently executing all other stages. The fabric
consists of several (horizontal) stripes composed of interconnect
and PEs with registers and ALUs, implemented as 3-input lookup
tables. The ALU includes a barrel shifter, carry chain circuitry, etc.
A stripe provides 32 ALUs with 4 bits each. The whole fabric has
28 stripes. The interconnect scheme of PipeRench features local
interconnect inside a stripe as well as local and global interconnect
between stripes and four global buses.

2.3 Crossbar-Based Architectures
A full crossbar switch, a most powerful communication

network is easily to rout. But the 2 RAs of this category use
only reduced crossbars. PADDI for the fast prototyping of
DSP datapaths features eight PEs, all connected by a
multilayer crossbar. PADDI-2 has 48 PEs, but saves area by
restricted crossbar with a hierarchical interconnect structure
for linear arrays of PEs forming clusters. This fabrics
sophistication has again an impact on routing.

PADDI-1 (Programmable Arithmetic Device for DSP) [24]
[25], for rapid prototyping of computation-intensive DSP data

paths, consists of clusters of 8 arithmetic execution units (EXUs)
16 bits wide, including 8 word SRAM (which may be con-
catenated for 32 bits) and connected to a central crossbar switch
box. Interconnect is organized in 2 levels: a 3 bit global bus to
broadcast global instructions to each EXU’s controller CTL,
decoded locally at second level into a 53 bit instruction word.

The PADDI-2 Architecture [26] features a data-driven
execution mechanism. Although the basic architectural
principles of the original PADDI were kept, the PADDI-2 has
several differences. It has 48 EXUs. Each PE features a 16 bit
ALU also including booth multiply and select, multiplication
instructions taking 8 cycles on a single processor. Alternatively,
eight EXUs can be pipelined, resulting in a single cycle
multiplication. PADDI-2 EXUs are packed in 12 clusters of
four elements each two level interconnect: six 16 bit intra-
cluster data buses (plus one bit control buses, and, inter-cluster
16 data buses, which can be broken up into shorter segments.

The Pleiades Architecture [27] is a generalized low power
“ PADDI-3” with programmable microprocessor and hetero-
geneous RA of EXUs, which allows to integrate both fine and
coarse grained EXUs, and, memories in place of EXUs. For each
algorithm domain (communication, speech coding, video
coding), an architecture instance can be created (with known
EXU types and numbers). Communication between EXUs is
dataflow driven. The control means available to the programmer
are basic EXU configurations to specify its operation, and
interconnect configurations to build EXU clusters. All
configuration registers are part of the processor’s memory map
and configuration codes are processor’s memory writes.

2.4 Future Reconfigurable Architectures
A universal RA obviously is an illusion. The way to go is

toward sufficiently flexible RAs, optimized for a particular
application domain like e. g. wireless communication, image
processing or multimedia etc. There is a need for tools
supporting such dedicated RA architecture development. But
architectures have an immense impact on implementability of
good mapping tools. „ Clever“ fabrics are too sophisticated to
find good tools. The best solution are simple generic fabrics
architecture principles, or, a mapping tool which generically
creates by itself the architectures it can manage easily [9], or, a
combination of both approaches like the platform space
exploration (s. „ The KressArray Family“ and “ Xplorer,”).

3. Programming Coarse Grain RAs
Programming frameworks for RAs (also see fig. 1) are

highly dependent on structure and granularity, and differ by
language level. For MorphoSys, MATRIX, PADDI-2 and
REMARC it’s assembler level. Some support the designer by a
graphical tool for manual P&R. Others feature automatic design
flow from HDL or high-level programming language.
Environments differ by the approach used for technology
mapping, placement, routing. Using only a simple script for
technology mapping [28] DP-FPGA [3] is not considered.

Technology mapping is mostly simpler for coarse grain
architectures than for FPGAs. Approaches are: direct
mapping, where the operators are mapped straight forward
onto PEs, with one PE for one operator, or, using an additional
library of functions not directly implementable by one PE, or,
more sophisticated tree matching also capable to merge
several operators into one PE by a modified FPGA tool kit. An
exception is the RAW compiler doing partitioning instead of
technology mapping, since RAW has RISC cores as PEs
accepting blocks from program input.

For operator placement, the architecture has an impact. An
approach often used for FPGAs synthesis is placement by
simulated annealing or a genetic algorithm. Garp uses a tree
matching algorithm instead, where placement is done together
with technology mapping. The use of greedy algorithms is
feasible only for linear arrays (PipeRench), or with a high

4

machine
category

Computer
(“v. Neumann”)

Xputer [9]
(no transputer)

engine
principles

instruction
sequencing

data
sequencing

machine
paradigm

procedural sequencing
(deterministic)

control-flow-
driven

data-stream-
driven

RA
supported no yes

mapping Kress DPSS CHESS RaPiD Colt

placement simulated
annealing

simulated annealing genetic algorithm

routing Pathfinder greedy algorithm

Fig. 6: FPGA-Style Mapping for coarse grain reconfigurable arrays.

level communication network (RAW). PADDI is an exception
by using a scheduling algorithm for resource allocation.

Routing also features quite different approaches. In two cases,
the routing is not done in an extra phase but integrated into the
placement and done on the fly. One approach (KressArray) uses a
simple algorithm restricted to connects with neighbours and
targets with at most the distance of one. The other (RaPiD)
employs the pathfinder algorithm [29], which has been developed
for FPGA routing. Greedy routing would be not satisfying.
General exceptions to the routing approaches is the RAW
architecture, which features only one high-level communication
resource, so no selection of routing resources is needed, and the
PADDI architecture, which features a crossbar switch having the
same effect. Greedy routing algorithms are only used for 1-D
RAs, or architectures capable to cure routing congestion by other
mechanisms, like Colt with wormhole run-time reconfiguration.

3.1 Assembler Programming
Assembler level code for coarse grain architectures can be

compared to configuration code for FPGAs. In the case of
systems comprising a microprocessor / RA symbiosis, only
the reconfigurable part is considered for the classification.
Programming is done mainly at a kind of assembler level for
PADDI-2, MATRIX, and, RAs of REMARC and MorphoSys.
PADDI-2 is crossbar-based whereas the rest is mesh-based.

Programming PADDI-2. For programming PADDI-2
[26], a tool box has been developed which includes software
libraries, a graphical interface for signal flow graphs, routing
tools, simulation tools, compilation tools and tools for board
access and board debugging. Major parts of this process are
done manually. The input specifies assembly code for each
function in the signal flow graph. The programmer manually
partitions the signal flow graph with a graphical tool, which
also aids in manual placement and routing. As an alternative to

for the RaPiD system works similar, but relies on relatively
complex algorithms. Colt tools use a structural description of
the dataflow. CHESS has been programmed from a hardware
description language (JHDL) source. P&R quality has a
massive impact on application performance. But, due to the low
number of PEs, P&R is much less complex than for FPGAs and
computational requirements are drastically reduced.

DPSS (DataPath Synthesis System) [4] generates configuration
code for KressArrays from ALE-X high-level language sources
[4] supporting datapaths with assignments, local variables and
loops. After classical optimizations it generates an expression tree.
Next processing steps include a front end, logic optimization,
technology mapping creating a netlist, simultaneous P&R by
simulated annealing, and I/O scheduling (incl. loop folding,
memory cycle optimization, register file usage). The result is the
application’s KressArray mapping and array I/O schedule. Finally
configuration binaries are assembled. Routing is restricted to direct
NN connect and rout-through of length 1. Other connect is routed
to buses or segmented buses. DPSS has also been part of the MoM-
3 Xputer compiler accepting and partitioning a subset of C subset
into sequential MoM code and structural KressArray code. The
more general CoDe-X approach [31] uses this MoM compiler as
part of a partitioning co-compiler accepting a C language superset
and partitioning the application onto the host and one or several
Xputer-based accelerators.

Tools for Colt [10] accept a dataflow description (below C
level) for placement by a genetic algorithm and routing by a greedy
algorithm (routing congestion is cured at run-time by wormhole
reconfiguration). Data stream headers hold configuration data for
routing and the functionality of all PEs encountered.

Programming RaPiD[21]
is done in RaPiD-C, a C-like
language with extensions
(like synchronization mechan-
isms and conditionals to
identify first or last loop
iteration) to explicitly speci-
fy parallelism, data movement
and partitioning, RaPiD-C
programs may consist of

manual placement and routing, an automated tool is provided,
which guarantees to find a mapping, if one exists, by

several nested loops de-
scribing pipelines. Outer

Fig. 7: Machine Paradigms.

exhaustive methods which need much computation time.
For Programming MATRIX [12] an assembly level macro

language has been developed. Some work on P&R pointed out
the original MATRIX’s weak points [30].

REMARC tools [15] allow concurrent programming of the
RISC processor (by C using the GCC compiler) and the RA by
adding REMARC assembler instructions. The compiler then
generates assembly code for the RISC processor with the
REMARC assembler instructions embedded which are further
processed by a special REMARC assembler generating binary
code for the REMARC instructions. Finally, the GCC compiler
is used again to generate RISC instruction code to invoke
REMARC and its instructions embedded as binary data.

Programming MorphoSys is supported by a SUIF-based
compiler [16] for host, and development tools for RA. Host / RA
partitioning is done manually by adding a prefix to functions to
be mapped onto RA. The compiler generates TinyRISC code for
RA activation. Configuration code is generated via a graphical
user interface or manually from an assembler level source also
usable to simulate the architecture from VHDL.

3.2 Frameworks with FPGA-Style Mapping
Computation-intensive algorithms for mapping onto

FPGAs are well-known and can often be used directly for
coarse grain architectures like for CHESS, Colt, KressArray,
RaPiD (see fig. 6). All four use simulated annealing or other
genetics for placement, and two use pathfinder for routing
[29]. The KressArray DPSS (Datapath Synthesis System)
accepts a C-like language source. The compilation framework

loops are transformed into sequential code for address generators,
inner loops into structural code for the RA. The compilation
steps are: netlist generation from structural code, extraction of
dynamic control, generation of controller code instruction
streams for dynamic control and generation of I/O
configuration data for the stream units. The netlist is mapped
onto RaPiD by pipelining, retiming, and P&R. Placement is
done by simulated annealing, with routing (by pathfinder [29])
done on the fly to measure placement quality [32].

For Programming the CHESS array [17] a compiler [33]
has been implemented accepting JHDL [34] sources and
generating CHESS netlists. Placement is done by simulated
annealing and routing by Pathfinder’s negotiated congestion
algorithm [29]. Part of the work is not disclosed.

3.3 Other mapping approaches
Greedy algorithms are poor in mapping to FPGAs. But,

although Garp is mesh-based, mapping treats it like a linear array
which allows mapping in one step by a simple greedy routing
algorithm. RAW features only one communication resource,
removing the wire selection problem from routing. Instead, the
compiler schedules time multiplexed NN connections. CPU
cores inside RAW PEs simplify mapping by loading entire
source code blocks. PipeRench resembling a linear array and
interconnect fabrics restrictions keep placement simple for a
greedy algorithm. PADDI uses a standard P&R approach.

Garp tools [13] use a SUIF-based C compiler [35] to generate
code for the MIPS host with embedded RA configuration code to
accelerate (only non-nested) loops. At next basic blocks are

5

generated and converted into hyperblocks containing a contiguous
group of basic blocks, also from alternative control paths. Control
flow inside a hyperblock is converted for predicated execution.
Blocks, which cannot be mapped, are removed from hyperblocks.
The resulting reduced hyperblock is then the basis for mapping.
The next step generates interfacing instructions for the host, and
transforms the hyperblock into a DFG (data flow graph). The
proprietary Gamma tool [36] maps the DFG onto Garp using a tree
covering algorithm which preserves the datapath structure, supports
features like the carry chains. Gamma first splits the DFG into
subtrees and then matches subtrees a with module patterns which
fit in one Garp row. During tree covering, the modules are also
placed in the array. After some optimizations the configuration
code is generated (incl. outing [38]), assembled into binary form,
and, linked with the hosts C object code.

RAW tools [39] [40] include a SUIF-based C compiler and
a run-time system managing dynamic mechanisms like branch
prediction, data caching [41], speculative execution, dynamic
code scheduling. The compiler handles resource allocation,
parallelism exploitation, communication scheduling, code
generation (for host and switch processors in each tile), and,
divides execution into coarse-grain parallel regions internally
communicating by static network, whereas intra-region
communication uses messages. The phases are: pointer
analysis [39] with data dependency analysis and memory
access generation (if known at compile-time), partitioning
application data for distributed memory; space-time
scheduling [40] for parallelization; address translation for
caching by software. RAW binary is generated by the MIPS
compiler back end. The RAW project aims more at parallel
processing rather than reconfigurable computing and failed in
finding a good automatic mapping algorithm [42].

PipeRench tools [23] [43] use the DIL single-assignment (SA)
language for design entry and as an intermediate form. First, the
compiler inlines all modules, unrolls loops and generates a straight-
line SA program (SAP). After optimizations and breaking the SAP
into pieces fitting on one stripe, a greedy P&R algorithm is run
which tries to add nodes to stripes. Once placed, a node is routed
and never moved again. P&R is fast by crossbar switch usage,
coarse granularity, and, restriction to unidirectional pipelines.

CADDI [44], assembler and simulator, has been imple-
mented for PADDI. First a silage [45] specification is
compiled into a CDFG (control /data flow graph), used for
estimations of critical path, minimum and maximum bounds
for hardware for a given time allocation, minimum bounds of
execution time, and for transformations like pipelining,
retiming, algebraic transformations, loop unrolling and
operation chaining. CDFG to architecture technology mapping
is straight-forward since all components are fixed and routing
through crossbars is efficient. If several PADDI clusters are
involved, a partitioning step comes before resource allocation,
assignment, and scheduling. The assignment phase maps
operations to EXUs by a rejectionless antivoter algorithm [46].

Compilation for Pleiades. Because of the complex design
space created by the heterogeneous architecture, the
application mapping problem is not yet solved completely.

Commercially available platforms. Chameleon Systems
uses co-compilation [19] (like known from earlier work [36]
[43] [31] [47] [48]), combining compiler optimization and
multithreading techniques, to hide configuration loading
latency and list scheduling to find ’best’ schedule for a series
of eBIOS calls. About mapping or compilation techniques for
the MorphICs RA no information has been disclosed.

4. Design Space Explorers (DSEs)
Some development environments aim beyond compiling. DSEs

(fig. 8 [42]) select one of many alternative solutions to meet a
design goal meeting constraints or desired properties to optimize a
design or a (by PSE) programmable platform. Guidance systems
or design assistants are interactive DSEs giving advice during
the design flow. Some DSEs avoid the status generation and

Explorer System year source inter-
active status evaluation status generation

DPE 1991 [49] no abstract models rule-based

Clio 1992 [50] yes prediction models advice generator

DIA 1998 [51] yes prediction fr. library rule-based

DSE for RAW 1998 [41] no analytical models analytical

ICOS 1998 [52] no fuzzy logic greedy search

DSE f. Multimedia 1999 [53] no simulation branch and bound
Xplorer 1999 [9][42] yes fuzzy rule-based simulated annealing

Fig. 8: Design Space Exploration Systems.

provide only predictions etc. from a knowledge data base.
Advanced DSEs provide status generation, e g. by expert
system, and present advice like a choice of proposals. Non-
interactive DSEs automatically generate a solution status from
rule-based knowledge or fuzzy learning.

4.1 Design Space Exploration
Interactive design assistants are DPE and Clio (both for VLSI)

and DIA. Including effect predictors and proposal generators
DPE (Design Planning System) [49] (using an expert system),
Clio [50] (using a hierarchy of templates) and DIA (Datapath-
Intensive ASICs) [51] (targeting semi-custom ASIC behavioural
level and based on encapsulated expert knowledge), generate a
design flow by creating a schematic, a data flow graph, or a
layout from a specification and area, cycle time, power, e.a.
constraints and to improve area, power, throughput etc.

4.2 Platform Space Explorers (PSEs)
A PSE serves to find an optimum RA or processor array (PA)

platform for an application domain by optimizing array size, path
width, processor’s MIPS, number of ALUs and branch units, local
SRAM size, data and instruction cache sizes, local bandwidth,
interconnect latency etc. from requirements like chip area, total
computation, memory size, buffer size, communication etc.
Software or configware application programming is finally not
part of exploration, but may serve platform evaluation. All three
being non-interactive, the DSE [41] for RAW [14] featuring an
analytical model, ICOS (Intelligent Concurrent Object-oriented
Synthesis) [52] featuring object-oriented fuzzy techniques, and
“ DSE for Multimedia Processors” [53] (DSEMMP) aim at
automatic synthesis of a multiprocessor platform from system
descriptions, performance constraints, and a cost bound and
generate an architecture. . DSEMMP aims at shared memory with
intel Strong-ARM SA-110 as a starting point.

Xplorer, an interactive PSE framework [9] [42] has been
implemented around the DPSS mapper [4]. This universal
design space exploration environment supports both, optimum
architecture selection (e. g. domain-specific) and application
development onto it and includes several tools: architecture
editor (to edit communication resources and annealing
parameters), mapping editor (to change I/O port type, freeze
locations of edge port, cell or cell group etc.), instruction
mapper to change the operator repertoire, architecture
suggestion generator [54], HDL generator for cell simulation,
retargettable cell layout generator (planned, similar to [55]), power
estimator (planned [56], similar to [58]). A cycle through an
exploration loop usually takes only minutes, so that a number of
alternative architectures may be checked in a reasonable time. By
mapping the application onto it verification is provided directly.

5. Conclusions
Exploding ASIC design cost and shrinking ASIC product

life cycles are a motivation to replace at least some of the ASICs
by RAs for product longevity by upgrading [59] [60] [61].
Performance is only one part of the story. The design community
is far away from fully exploiting the flexibility of RAs [34],
supporting novel powerful techniques -directly in system
jointly with all other components in real time, dramatically
faster than simulation- for debugging, run-time profiling,
verification, system-wide tuning, run-time API, field-

6

n time

g time

le time

on time

“Instruction Fetch”

maintenance, field-upgrades (also via internet) flexible self-
monitoring functions by configuring unused parts of the RA.

25. D. C. Chen, J. M. Rabaey: A Reconfigurable Multiprocessor IC for
Rapid Prototyping of Algorithmic-Specific High-Speed DSP Data
Paths; IEEE J. Solid-State Circuits, Vol. 27, No. 12, Dec. 1992.

This potential is largely unrealized
although having been technically possible

time of „instruction fetch“ 26. A. K. W. Yeung, J.M. Rabaey: A Reconfigurable Data-driven Multi-
processor Architecture for Rapid Prototyping of High Throughput

and demonstrated already for about a
decade [34]. Using RAs for ASICs
creates new markets transferring
synthesis from vendor to customer,
who needs hardware experts or
compilers to replace CAD. A machine
paradigm makes compilers much easier

run
time

loading
time

compile

time

fabrication
time

microprocessor
parallel computer

Reconfigurable

Computing

ASIC

DSP Algorithms; Proc. HICSS-26, Kauai, Hawaii, Jan. 1993.
27. J. Rabaey: Reconfigurable Computing: The Solution to Low Power

Programmable DSP; Proc. ICASSP’97 Munich, Germany, April 1997.
28. D. Lewis: Personal Communication, April 2000.

29. C. Ebeling et al.: Placement and Routing Tools for the Tryptich FPGA;
IEEE Trans VLSI Systems 3, No. 4, December 1995.

30. A. DeHon: Personal Communication, February 2000.
31. J. Becker: A Partitioning Compiler for Computers with Xputer-based

to develop and machines easier to
program - the success story of software

Fig. 9: “Instruction Fetch”. Accelerators; Ph. D. dissertation, Kaiserslautern University, 1997.
32. C. Ebeling: Personal Communication, March 2000.

industry. But “v. Neumann” does not support soft datapaths
because “instruction fetch” is not done at run time (fig. 9). Instead
of a program counter we need a data counter [63] (data sequencer
[64]): the new “Xputer” machine paradigm for soft hardware (fig.
7) [7]. Instead of a “control flow” sublanguage a “data stream”
sublanguage defines data goto, data jumps, data loops (also nested),
parallel data loops (using multiple data counters) like by the MoPL
language [65] - easy to learn by its similarity to control flow.

Reconfigurable platforms and their applications are heading
from niche to mainstream, bridging the gap between ASICs and
microprocessors. It’s time to revisit R&D results and to derive
commercial solutions: at least one promising approach is
available. It is time for you to get involved.

6. Literature
1. R. Hartenstein, H. Grünbacher (Editors): The Roadmap to Reconfigurable

computing - Proc. FPL2000, Aug. 27-30, 2000; LNCS, Springer-Verlag 2000
2. R. Hartenstein: The Microprocessor is no more General Purpose

(invited paper), Proc. ISIS'97, Austin, Texas, USA, Oct. 8-10, 1997.
3. D. Cherepacha and D. Lewis: A Datapath Oriented Architecture for

FPGAs; Proc. FPGA‘94, Monterey, CA, USA, February 1994.
4. R. Hartenstein, R. Kress: A Datapath Synthesis System for the

Reconfigurable Data- path Architecture; ASP-DAC'95, Chiba, Japan,
Aug. 29 - Sept. 1, 1995

5. H. Reinig: A Scalable Architecture for Custom Computing; Ph.D.
Thesis, Univ. of Kaiserslautern, Germany, July 1999.

6. R. Hartenstein, A. Hirschbiel, M. Weber: MoM - a partly custom-design
architecture compared to standard hardware; IEEE CompEuro 1989

7. R. Hartenstein et al.: A Novel Paradigm of Parallel Computation and its
Use to Implement Simple High Performance Hardware; InfoJapan’90,
30th Anniversary o’ Computer Society of Japan, Tokyo, Japan, 1990.

8. R. Hartenstein et. al.: A Novel ASIC Design Approach Based on a
New Machine Paradigm; IEEE J.SSC, Volume 26, No. 7, July 1991.

9. R. Hartenstein, M. Herz, Th. Hoffmann, U. Nageldinger:
KressArray Xplorer: A New CAD Environment to Optimize
Reconfigurable Datapath Array Architectures; ASP- DAC,
Yokohama, Japan, Jan. 25-28, 2000.

10. R. A. Bittner et al.: Colt: An Experiment in Wormhole Run-time Recon-
figuration; SPIE Photonics East `96, Boston, MA, USA, Nov. 1996.

11. K. Hwang: Advanced Computer Architecture; McGraw-Hill, 1993.
12. E. Mirsky, A. DeHon: MATRIX: A Reconfigurable Computing Archi-

tecture with Configurable Instruction Distribution and Deployable
Resources; Proc. IEEE FCCM‘96, Napa, CA, USA, April 17-19, 1996.

13. J. Hauser and J. Wawrzynek: Garp: A MIPS Processor with a Recon-
figurable Coprocessor; Proc. IEEE FCCM‘97, Napa, April 16-18, 1997.

14. E. Waingold et al.: Baring it all to Software: RAW Machines; IEEE
Computer, September 1997, pp. 86-93.

15. T. Miyamori and K. Olukotun: REMARC: Reconfigurable Multimedia
Array Coprocessor; Proc. ACM/SIGDA FPGA‘98, Monterey, Feb. 1998.

16. H. Singh, et al.: MorphoSys: An Integrated Re-configurable Architec-
ture; Proceedings of the NATO RTO Symp. on System Concepts and
Integration, Monterey, CA, USA, April 20-22, 1998.

17. A. Marshall et al.: A Reconfigurable Arithmetic Array for Multimedia
Applications; Proc. ACM/SIGDA FPGA‘99, Monterey, Feb. 21-23, 1999

18. J. Becker et al.: Architecture and Application of a Dynamically Recon-
figurable Hardware Array for Future Mobile Communication
Systems; Proc. FCCM’00, Napa, CA, USA, April 17-19, 2000.

19. X.Tang, et al.: A Compiler Directed Approach to Hiding Configura-
tion Loading Latency in Chameleon Reconfigurable Chips; in [1]

20. http://www.MorphICs.com
21. C. Ebeling et al.: „ RaPiD: Reconfigurable Pipelined Datapath“, in [22]
22. M. Glesner, R. Hartenstein (Editors): Proc. FPL’96, Darmstadt, Ger-

many, Sept. 23-25, 1996, LNCS 1142, Springer Verlag 1996
23. S. C. Goldstein et al.: PipeRench: A Coprocessor for Streaming Mul-

timedia Acceleration; Proc. ISCA‘99, Atlanta, May 2-4, 1999
24. D. Chen and J. Rabaey: PADDI: Programmable arithmetic devices for

digital signal processing; VLSI Signal Processing IV, IEEE Press 1990.

33. A. Marshall: Personal Communication; February 2000.
34. B. Hutchings, B. Nelson: Using General-Purpose Programming Lan-

guages for FPGA Design; Proc. DAC 2000, Los Angeles, June 2000
35. M. W. Hall et al.: Maximizing Multiprocessor Performance with the

SUIF Compiler; IEEE Computer, Dec. 1996
36. T. J. Callahan and J. Wawrzynek: Instruction-Level Parallelism for

Reconfigurable Computing; in [37] pp. 248-257.
37. R. Hartenstein, A. Keevallik (Editors): Proc. FPL’98, Tallinn, Estonia,

Aug. 31- Sept. 3, 1998, LNCS, Springer Verlag, 1998
38. J. Hauser: Personal Communication, March 2000.
39. R. Barua et al.: Maps: A Compiler-Managed Memory System for

RAW Machines; Proc. ISCA‘99, Atlanta, USA, June, 1999.

40. W. Lee et al.: Space-Time Scheduling of Instruction-Level Parallelism
on a RAW Machine; Proc. ASPLOS‘98, San Jose, Oct. 4-7, 1998.

41. C. A. Moritz et al.: Hot Pages: Software Caching for RAW Microproc-
essors; MIT, LCS-TM-599, Cambridge, MA, Aug. 1999.

42. U. Nageldinger: Design-Space Exploration for Coarse Grained Reconfi-
gurable Architectures; dissertation, Kaiserslautern University, 2000

43. M. Budiu and S. C. Goldstein: Fast Compilation for Pipelined Recon-
figurable Fabrics; Proc. FPGA‘99, Monterey, Feb. 1999, pp. 135-143.

44. D. Chen at al.: An Integrated System for Rapid Prototyping of High Per-
formance Data Paths; Proc. ASAP‘92, Los Alamitos, Aug. 4-7, 1992

45. P. H. Hilfinger: A High-Level Language and Silicon Compiler for Digital
Signal Processing; Proc. 1985 IEEE CICC., Portland, May 20-23, 1985.

46. M. Potkonjak, J. Rabaey: A Scheduling and Resource Allocation
Algorithm for Hierarchical Signal Flow Graphs; Proc. DAC‘89, Las
Vegas, June 25-29, 1989

47. M. Weinhardt, W. Luk: Pipeline Vectorization for Reconfigurable
Systems; Proc. IEEE FCCM, April 1999

48. M. Gokhale, J. Stone: NAPA C: Compiling for a hybrid RISC / FPGA
architecture; Proc. IEEE FCCM April 1998

49. D Knapp, A. Parker: The ADAM Design Planning Engine, IEEE
Trans CAD 10/7, July 1991

50. J. Lopez et al.: Design Assistance for CAD Frameworks; Proc. EURO-
DAC’62, Hamburg, Germany, Sept. 7-10, 1992

51. L. Guerra et al.: A Methodology for Guided Behavioural Level Opti-
mization; Proc. DAC’98, San Francisco, June 15-19, 1998

52. P.-A. Hsiung et al.: PSM: An Object-oriented Synthesis Approach to
Multiprocessor Design; IEEE Trans VLSI Systems 4/1, March 1999

53. J. Kin et al.: Power Efficient Media Processor Design Space Explora-
tion; Proc. DAC’99, New Orleans, June 21-25, 1999

54. R. Hartenstein, M. Herz, T. Hoffmann, U. Nageldinger: Generation of
Design Suggestions for Coarse-Grain Reconfigurable Architectures; in [1]

55. V. Moshnyaga, H. Yasuura: A Data-Path Modules Design from Algorith-
mic Representations; IFIP WG 10.5 Worksh. on Synthesis, Generation and
Portability of Library Blocks for ASIC Design, Grenoble, France, Mar 1992

56. R. Hartenstein, Th. Hoffmann, U. Nageldinger Design-Space
Exploration of Low Power Coarse Grained Reconfigurable Datapath
Array Architectures; in [57]

57. D. Soudris, P. Pirsch, E. Barke (Editors): Proc. PATMOS 2000; Göttin-
gen, Germany Sept. 13 - 15, 2000; LNCS, Springer Verlag, 2000

58. L. Kruse et al.: Lower Bounds on the Power Consumption in Scheduled
Data Flow Graphs with Resource Constraints; Proc. DATE, Mrch 2000.

59. T. Kean: It‘s FPL, Jim - but not as we know it! - Market Opportunities
fro the new Commercial Architectures; in [1]

60. H.Fallside, M.Smith: Internet Connected FPL; in [1]
61. R. Hartenstein, M. Herz, T. Hoffmann, U. Nageldinger: An Internet Based

Development Framework for Reconfigurable Computing; in [62]
62. P. Lysaght, J. Irvine, R. Hartenstein (Eds.): Proc. FPL'99, Glasgow,

UK, Aug./Sept. 1999, LNCS Vol. 1673, Springer-Verlag, 1999
63. J. Becker et al.: A General Approach in System Design Integrating Recon-

figurable Accelerators; Proc. IEEE ISIS’96; Austin, TX, Oct. 9-11, 1996
64. J. Becker, R. Hartenstein, M. Herz, U. Nageldinger A Novel

Sequencer Hardware for Application Specific Computing; Proc.
ASAP‘97, Zurich, Switzerland, July 14-16, 1997

65. A. Ast, J. Becker, R. Hartenstein, R. Kress, H. Reinig, K. Schmidt:
Data-procedural Languages for FPL-based Machines; in [66]

66. R. Hartenstein, M. Servit (Editors): Proc. FPL’94, Prague, Czech
Republic, Sept. 7-10, 1994, LNCS, Springer Verlag, 1994

http://www.morphics.com/

