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Abstract. The paper gives a brief survey over a decade of 
R&D on coarse grain reconfigurable hardware and related 
compilation techniques and points out its significance to 
the emerging discipline of reconfigurable computing. 

 

1. Introduction 
Rapidly increasing  attendance  [1]  of  conferences  on  re- 

configurable computing and the adoption of this topic area by 
congresses like ASP-DAC, DAC, DATE, ISCAS, SPIE, and 
others indicate, that reconfigurable platforms are heading from 
niche to mainstream, bridging the gap between ASICs and 
microprocessors (fig. 2). It’s time to revisit R&D results: the 
goal of this paper. (On some projects mentioned we have only 
incomplete or no information on the status of implementation.) 

2. Coarse Grained Reconfigurable Architectures 

parallelism. and encourages nearest neighbour (NN) links 
between adjacent PEs (NN or 4NN: links to 4 sides {east. 
west. north, south}, or, 8NN: NN-links to 8 sides {east, north- 
east, north, north-west, west, south-west, south, south-east}, 
like in CHESS array). Typically, longer lines are added with 
different lengths for connections over distances larger than 1. 

DP-FPGA (Datapath FPGA) [3] has been introduced to 
implement regularly structured datapaths. It is a FPGA-like 
mixed fine and coarse grained architecture with 1 and 4 bits. 
Its fabric includes 3 component types: control logic, the 
datapath, and memory. The datapath block consists of 4 bit- 
slices: each bit-slice with a lookup table, a carry chain and a 
four-bit register. DP-FPGA provides separate routing 
resources for data (horizontal, 4 bits wide) and control signals 
(vertical, single bit). A third resource is the shift block to 
support single-bit or multi bit shifts and irregularities. 

Using FPGAs as accelerator platforms is not subject of this 
paper. In contrast to FPGA use (fine grain reconfigurable) the 
area of Reconfigurable Computing mostly stresses the use of 
coarse grain reconfigurable arrays (RAs) with pathwidths greater 

The KressArray is primarily a mesh 
of rDPUs physically connected through 
wiring by abutment: no extra routing 
areas  needed..  In  1995  it  has  been 
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Fig. 2: Bridg- 
ing the gap. 

than  1  bit,  because  fine-grained  architectures  are  much  less 
efficient because of a huge routing area overhead  and  poor 
routability  [2].  Since  computational  datapaths  have  regular 
structure, full custom designs of reconfigurable datapath units 
(rDPUs)   can   be   drastically   more   area-efficient,   than   by 
assembling the FPGA way from single-bit CLBs. Coarse-grained 
architectures provide operator level CFBs, word level datapaths, 

published [4] as “rDPA” (reconfigur- 
able DataPath Array). “ KressArray” 
has been coined later. The KressArray 
is a super-systolic array (generalization 
of the systolic array: fig. 4) which is 
achieved by DPSS (see § „DPSS“). Its 
interconnect   fabric   distinguishes   3 
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and powerful and very area-efficient datapath routing switches. 

A major benefit is the massive reduction of configuration 
memory and configuration time, as well as drastic complexity 
reduction of the P&R (placement and routing) problem. Several 
architectures will be briefly outlined (also see figure 1). Some 
of them introduce multi-granular solutions, where more 
coarse granularity can be achieved by bundling of resources, 
such as e. g. 4 ALUs of 4 bits each to obtain a 16 bit ALU. 

2.1 Primarily Mesh-Based Architectures 
Mesh-based architectures arrange their PEs in a rectangular 

2-D array with horizontal and vertical connections which 
supports    rich    communication    resources    for    efficient 

physical levels: multiple unidirectional and/or bidirectional NN 
links (fig. 3), full length or segmented column or row backbuses, a 
single global bus reaching all rDPUs (also for configuration). Each 
rDPU can serve for routing only, as an operator, or, an operator 
with extra routing paths. The 2nd and 3rd level is layouted over the 
cell: wiring by abutment capability is not affected. 

A first 32 bit KressArray included an additional control unit for 
the MoM-3 [5] Xputer [6] [7] [8] with rDPUs supporting all C 
language operators. With the new Xplorer environment [9] rDPUs 
also support any other operator repertoires including branching, 
while loops and do-while loops. I/O data streams from and to the 
array can be transferred by global bus, array edge ports, or ports of 
other rDPUs (addressed individually by an address generator). 

 

Project first 
publ. Source Architecture Granularity Fabrics Mapping 

intended target 
application 

PADDI 1990 [24] crossbar 16 bit central crossbar routing DSP 

PADDI-2 1993 [26] crossbar 16 bit multiple crossbar routing DSP and others 

DP-FPGA 1994 [3] 2-D array 1 & 4 bit, multi-granular inhomogenous routing channels switchbox routing regular datapaths 

KressArray 1995 [4] [9] 2-D mesh family: select pathwidth multiple NN & bus segments (co-)compilation (adaptable) 

Colt 1996 [10] 2-D array 1 & 16 bit inhomogenous (sophisticated) run time reconfiguration highly dynamic reconfig. 

RaPID 1996 [21] 1-D array 16 bit segmented buses channel routing pipelining 

Matrix 1996 [12] 2-D mesh 8 bit, multi-granular 8NN, length 4 & global lines multi-length general purpose 

RAW 1997 [14] 2-D mesh 8 bit, multi-granular 8NN switched connections switchbox rout experimental 

Garp 1997 [13] 2-D mesh 2 bit global & semi-global lines heuristic routing loop acceleration 

Pleiades 1997 [27] mesh / crossbar multi-granular multiple segmented crossbar switchbox routing multimedia 

PipeRench 1998 [23] 1-D array 128 bit (sophisticated) scheduling pipelining 

REMARC 1998 [15] 2-D mesh 16 bit NN & full length buses (informationnotavailable) multimedia 

MorphoSys 1999 [16] 2-D mesh 16 bit NN, length 2 & 3 global lines manual P&R (not disclosed) 

CHESS 1999 [17] hexagon mesh 4 bit, multi-granular 8NN and buses JHDL compilation multimedia 

DReAM 2000 [18] 2-D array 8 &16 bit NN, segmented buses co-compilation next generation wireless 

Chameleon 2000 [19] 2-D array 32 bit (not disclosed) co-compilation tele- & datacommunication 

MorphICs 2000 [20] 2-D array (not disclosed) (not disclosed) (not disclosed) next generation wireless 

Fig. 1: Summary of the technical details of the different coarse-grained reconfigurable architectures; Note: NN stands for “nearest neighbour”. 

http://www.fpl.uni-kl.de/
http://www.fpl.uni-kl.de/
http://www.fpl.uni-kl.de/
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Although KressArrays are dynamically partially configurable, 
applications tried out so far did not make use of it. 

The KressArray Family. Supported by an application and 
development tool and platform architecture space explorer 
(PSE) environment the basic principles of the KressArray 
define an entire family of KressArrays covering a wide but 
generic variety of interconnect resources and functional 
resources. A later version of this PDE environment, called 
(see paragraph “ Xplorer,”), supports the rapid creation of RA 
and rPDU architectures optimized for a particular application 
domain (like e. g. image processing, multimedia, or others), 
and rapid mapping of applications onto any RA of this family. 

Colt [10] combines concepts from FPGAs 
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Fig. 4: Pipelined datapath arrays (pipe networks). 

provides possible flow control as a backup dynamic support, if the 
compiler should fail to find a static schedule. 

REMARC (Reconfigurable  Multimedia  Array  Coprocessor) 
and data flow computing. It’s a 16 bit pipenet 
[11] and relies highly on runtime 
reconfiguration using wormhole routing. 
Hereby, the data stream headers hold 
configuration data for routing and the 
functionality of all PEs encountered. Colt has a 
mesh of 16 bit IFUs (Interconnected Functional 
Units), a crossbar switch, an integer multiplier, 
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Fig. 3: KressArray 

NN ports examples. 

[15], a reconfigurable accelerator tightly coupled to a MIPS-II RISC 
processor, consists of an 8 by 8 array of 16 bit “nanoprocessors” with 
memory, attached to a global control unit. The communication 
resources consist of nanoprocessors NN connections and additional 
32 bit horizontal and vertical buses which also allow broadcast 
to processors in the same row or column respectively, or, to 
broadcast a global program counter value each cycle to all 
nanoprocessors, also to support SIMD operations. 

and six data ports. Each IFU features an ALU, a barrel shifter to 
support multiplication and floating point, a decision unit for flow 
branching, and optional delay units for pipeline synchronization. 

MATRIX [12] (Multiple Alu architecture with Reconfigur- 
able Interconnect eXperiment) is a multi-granular array of 8-bit 
BFUs (Basic Functional Units) with procedurally programmable 
microprocessor core including ALU, multiplier, 256 word data and 
instruction memory and a controller which can generate local 
control signals from ALU output by a pattern matcher, a reduction 
network, or, half a NOR PLA. With these features, a BFU can 
serve as instruction memory, data memory, register-file and ALU, 
or independent ALU function. Instructions may be routed over the 
array to several ALUs. The routing fabric provides 3 levels of 8-bit 
buses: 8 nearest neighbour (8NN) and 4 second-nearest neighbour 
connections, bypass connections of length 4, and global lines. 

The Garp Architecture [13] resembles an FPGA and 
comes with a MIPS-II-like host and, for acceleration of 
specific loops or subroutines, a 32 by 24 RA of LUT-based 2 
bit PEs. Basic unit of its primarily mesh-based architecture is a 
row of 32 PEs, a reconfigurable ALU. The host has instruction 
set extensions to configure and control the RA. Array 
execution is initialized by the number of clock cycles to do. 
Host and RA share the same memory hierarchy. Memory 
accesses can be initiated by the RA, but only through the 
central 16 columns. The blocks in the leftmost column are 
dedicated controllers for interfacing. For fast reconfigurations, 
the RA features a distributed cache with depth 4, which stores 
the least recently used configurations. The routing architecture 

MorphoSys (Morphoing  System  [16])  has  a  MIPS-like 
“ TinyRISC” processor with extended instruction set, a mesh- 
connected 8 by 8 RA, a frame buffer for intermediate data, 
context memory, and DMA controller. The RA is divided into 
four quadrants of 4 by 4 16 bit RCs each, featuring ALU, 
multiplier, shifter, register file, and a 32 bit context register for 
storing the configuration word. The interconnect network 
features 3 layers: 4 NN ports, links of distance 2, and, inter- 
quadrant buses spanning the whole array. TinyRISC extra 
DMA instructions initiate data transfers between the main 
memory and the “frame buffer” internal data memory for 
blocks of intermediate results, 128 by 16 bytes in total.. 

The CHESS Array. The CHESS hexagonal array [17] 
features a chessboard-like floorplan with interleaved rows of 
alternating ALU / switchbox sequence (figure 5). Embedded 
RAM areas support high memory requirements. Switchboxes 
can be converted to 16 word by 4 bit RAMs if needed. RAMs 
within switchboxes can also be used as a 4-input, 4-output 
LUT. The interconnect fabrics of CHESS has segmented four- 
bit buses of different length. There are 16 buses in each row 
and column, 4 buses for local connections spanning one 
switchbox, 4 buses of length 2, and 2 buses of length 4, 8 and 
16 respectively. To avoid routing congestion, the array 
features also embedded 256 word by 8 bit block RAMs. An 
ALU data output may feed the configuration input of another 
ALU, so that its functionality can be changed on a cycle-per- 
cycle basis at runtime without uploading. However, partial 
configuration by uploading is not possible. 

includes 2 bit horizontal and vertical lines of different length, 
segmented in a non-uniform way: short horizontal segments 
spanning  11  blocks,  long  horizontals  spanning  the  whole 
array, and different length vertical segments. 

RAW: Reconfigurable Architecture Workstation [14] pro- 
vides a RISC multi processor architecture composed of NN- 
connected 32-bit modified MIPS R2000 microprocessor tiles 
with ALU, 6-stage pipeline, floating point unit, controller, 
register file of 32 general purpose and 16 floating point registers, 
program counter, and local cached data memory and 32 Kilobyte 
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SRAM instruction memory. The prototype chip features 16 tiles 
arranged in a 4 by 4 array. Early concepts [14] having been 
abandoned included also configurable logic to allow customized 

 

ALU ALU 
 

ALU Embedded 
RAM 

instructions. RAW provides both a static (determined at compile- 
time) and a dynamic network (determined at run-time: wormhole 
routing for the data forwarding). Since the processors lack hardware 
for register renaming, dynamic instruction issuing or caching (like in 
superscalar processors), statically scheduled instruction streams are 
generated by the compiler, thus moving the responsibility for all 
dynamic  issues  to  the  development  software.  However,  RAW 

Fig. 5: CHESS array hexagon floor plan. 

The DReAM Array (Dynamically Reconfigurable Architecture 
for Mobile Systems [18]) for next generation wireless 
communication, is a 0.35 µm CMOS standard cell design 
fabricated by Mietec/Alcatel. Each RPU consists of: 2 
dynamically reconfigurable 8-bit Reconfigurable Arithmetic 
Processing (RAP) units, 2 barrel shifters, a controller, two 16 by 
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8-bit dual port RAMs (used as LUT or FIFO), and, a 
Communication Protocol Controller. The RPU array fabric uses 
NN ports and global buses segmentable by switching boxes. 

Industrial RA Platforms. Chameleon Systems offers a 
reconfigurable platform for telecommunications and data 
communications [19], with a 32 bit RISC core as a host, 
connected to a RA fabric with 108 DPUs (84 32-bit ALUs and 
24 16-bit multipliers), arranged as 4 slices by 3 tiles à 7 ALUs 
and 2 multipliers each, including an 8 word instruction 
memory for each DPU and 8 kBytes of local memory for each 
slice. Also MorphICs mentions its RA, but without details [20]. 

2.2 Architectures Based on Linear Arrays 
Some RAs are based on one or several linear arrays, 

typically also with NN connect, aiming at mapping pipelines 
onto it. If the pipes have forks, which otherwise would require a 
2-D realization, additional routing resources are needed, like 
longer lines spanning the whole or a part of the array, often 
being segmented. Two RAs have linear array structure. RaPiD 
[21] provides different computing resources, like ALUs, RAMs, 
multipliers, and registers, but irregularly distributed. While 
RaPiD uses mostly static reconfiguration, PipeRench relies on 
dynamic reconfiguration, allowing the reconfiguration of a PE 
in each execution cycle. Besides the mostly unidirectional NN 
connects, it provides also a global bus. 

RaPiD: The Reconfigurable Pipelined Datapath (RaPiD) 
[21] aims at speed-up of highly regular, computation-intensive 
tasks by deep pipelines on its 1-D RA. RaPiD-1 features 15 
DPUs of 8 bit with integer multiplier (32 bit output), 3 integer 
ALUs, 6 general-purpose datapath registers and 3 local 32 word 
memories, all 16 bits wide. ALUs can be chained. Each 
memory has a special datapath register with an incrementing 
feedback path. To implement I/O streams RaPiD includes a 
stream generator with address generators, optimized for nested 
loop structures, associated with FIFOs. The address sequences 
for the generators are determined at compile-time. RaPiD’s 
routing and configuration architecture consists of several 
parallel segmented 16 bit buses, which span the whole array. 
The length of the bus segments varies by tracks. In some tracks, 
adjacent bus segments can be merged. The sophisticated 
interconnect fabric cannot be detailed here. 

PipeRench [23], an accelerator for pipelined applications, 
provides several reconfigurable pipeline stages (“stripes”) and 
relies on fast partial dynamic pipeline reconfiguration and run time 
scheduling of configuration streams and data streams. It has a 256 
by 1024 bit configuration memory, a state memory (used to save 
the current register contents of a stripe), an address translation 
table (ATT), four data controllers, a memory bus controller and a 
configuration controller. The reconfigurable fabric of the 
PipeRench allows the configuration of a pipeline stage in every 
cycle, while concurrently executing all other stages. The fabric 
consists of several (horizontal) stripes composed of interconnect 
and PEs with registers and ALUs, implemented as 3-input lookup 
tables. The ALU includes a barrel shifter, carry chain circuitry, etc. 
A stripe provides 32 ALUs with 4 bits each. The whole fabric has 
28 stripes. The interconnect scheme of PipeRench features local 
interconnect inside a stripe as well as local and global interconnect 
between stripes and four global buses. 

2.3 Crossbar-Based Architectures 
A full crossbar switch, a most powerful communication 

network is easily to rout. But the 2 RAs of this category use 
only reduced crossbars. PADDI for the fast prototyping of 
DSP datapaths features eight PEs, all connected by a 
multilayer crossbar. PADDI-2 has 48 PEs, but saves area by 
restricted crossbar with a hierarchical interconnect structure 
for linear arrays of PEs forming clusters. This fabrics 
sophistication has again an impact on routing. 

PADDI-1 (Programmable Arithmetic Device for DSP) [24] 
[25], for rapid prototyping of computation-intensive DSP data 

 

paths, consists of clusters of 8 arithmetic execution units (EXUs) 
16 bits wide, including 8 word SRAM (which may be con- 
catenated for 32 bits) and connected to a central crossbar switch 
box. Interconnect is organized in 2 levels: a 3 bit global bus to 
broadcast global instructions to each EXU’s controller CTL, 
decoded locally at second level into a 53 bit instruction word. 

The PADDI-2 Architecture [26] features a data-driven 
execution mechanism. Although the basic architectural 
principles of the original PADDI were kept, the PADDI-2 has 
several differences. It has 48 EXUs. Each PE features a 16 bit 
ALU also including booth multiply and select, multiplication 
instructions taking 8 cycles on a single processor. Alternatively, 
eight EXUs can be pipelined, resulting in a single cycle 
multiplication. PADDI-2 EXUs are packed in 12 clusters of 
four elements each two level interconnect: six 16 bit intra- 
cluster data buses (plus one bit control buses, and, inter-cluster 
16 data buses, which can be broken up into shorter segments. 

The Pleiades Architecture [27] is a generalized low power 
“ PADDI-3” with programmable microprocessor and hetero- 
geneous RA of EXUs, which allows to integrate both fine and 
coarse grained EXUs, and, memories in place of EXUs. For each 
algorithm domain (communication, speech coding, video 
coding), an architecture instance can be created (with known 
EXU types and numbers). Communication between EXUs is 
dataflow driven. The control means available to the programmer 
are basic EXU configurations to specify its operation, and 
interconnect configurations to build EXU clusters. All 
configuration registers are part of the processor’s memory map 
and configuration codes are processor’s memory writes. 

2.4 Future Reconfigurable Architectures 
A universal RA obviously is an illusion. The way to go is 

toward sufficiently flexible RAs, optimized for a particular 
application domain like e. g. wireless communication, image 
processing or multimedia etc. There is a need for tools 
supporting such dedicated RA architecture development. But 
architectures have an immense impact on implementability of 
good mapping tools. „ Clever“ fabrics are too sophisticated to 
find good tools. The best solution are simple generic fabrics 
architecture principles, or, a mapping tool which generically 
creates by itself the architectures it can manage easily [9], or, a 
combination of both approaches like the platform space 
exploration (s. „ The KressArray Family“ and “ Xplorer,”). 

3. Programming Coarse Grain RAs 
Programming frameworks for RAs (also see fig. 1) are 

highly dependent on structure and granularity, and differ by 
language level. For MorphoSys, MATRIX, PADDI-2 and 
REMARC it’s assembler level. Some support the designer by a 
graphical tool for manual P&R. Others feature automatic design 
flow from HDL or high-level programming language. 
Environments differ by the approach used for technology 
mapping, placement, routing. Using only a simple script for 
technology mapping [28] DP-FPGA [3] is not considered. 

Technology mapping is mostly simpler for coarse grain 
architectures than for FPGAs. Approaches are: direct 
mapping, where the operators are mapped straight forward 
onto PEs, with one PE for one operator, or, using an additional 
library of functions not directly implementable by one PE, or, 
more sophisticated tree matching also capable to merge 
several operators into one PE by a modified FPGA tool kit. An 
exception is the RAW compiler doing partitioning instead of 
technology mapping, since RAW has RISC cores as PEs 
accepting blocks from program input. 

For operator placement, the architecture has an impact. An 
approach often used for FPGAs synthesis is placement by 
simulated annealing or a genetic algorithm. Garp uses a tree 
matching algorithm instead, where placement is done together 
with technology mapping. The use of greedy algorithms is 
feasible only for linear arrays (PipeRench), or with a high 
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Fig. 6: FPGA-Style Mapping for coarse grain reconfigurable arrays. 

level communication network (RAW). PADDI is an exception 
by using a scheduling algorithm for resource allocation. 

Routing also features quite different approaches. In two cases, 
the routing is not done in an extra phase but integrated into the 
placement and done on the fly. One approach (KressArray) uses a 
simple algorithm restricted to connects with neighbours and 
targets with at most the distance of one. The other (RaPiD) 
employs the pathfinder algorithm [29], which has been developed 
for FPGA routing. Greedy routing would be not satisfying. 
General exceptions to the routing approaches is the RAW 
architecture, which features only one high-level communication 
resource, so no selection of routing resources is needed, and the 
PADDI architecture, which features a crossbar switch having the 
same effect. Greedy routing algorithms are only used for 1-D 
RAs, or architectures capable to cure routing congestion by other 
mechanisms, like Colt with wormhole run-time reconfiguration. 

3.1 Assembler Programming 
Assembler level code for coarse grain architectures can be 

compared to configuration code for FPGAs. In the case of 
systems comprising a microprocessor / RA symbiosis, only 
the reconfigurable part is considered for the classification. 
Programming is done mainly at a kind of assembler level for 
PADDI-2, MATRIX, and, RAs of REMARC and MorphoSys. 
PADDI-2 is crossbar-based whereas the rest is mesh-based. 

Programming PADDI-2. For programming PADDI-2 
[26], a tool box has been developed which includes software 
libraries, a graphical interface for signal flow graphs, routing 
tools, simulation tools, compilation tools and tools for board 
access and board debugging. Major parts of this process are 
done manually. The input specifies assembly code for each 
function in the signal flow graph. The programmer manually 
partitions the signal flow graph with a graphical tool, which 
also aids in manual placement and routing. As an alternative to 

 

for the RaPiD system works similar, but relies on relatively 
complex algorithms. Colt tools use a structural description of 
the dataflow. CHESS has been programmed from a hardware 
description language (JHDL) source. P&R quality has a 
massive impact on application performance. But, due to the low 
number of PEs, P&R is much less complex than for FPGAs and 
computational requirements are drastically reduced. 

DPSS (DataPath Synthesis System) [4] generates configuration 
code for KressArrays from ALE-X high-level language sources 
[4] supporting datapaths with assignments, local variables and 
loops. After classical optimizations it generates an expression tree. 
Next processing steps include a front end, logic optimization, 
technology mapping creating a netlist, simultaneous P&R by 
simulated annealing, and I/O scheduling (incl. loop folding, 
memory cycle optimization, register file usage). The result is the 
application’s KressArray mapping and array I/O schedule. Finally 
configuration binaries are assembled. Routing is restricted to direct 
NN connect and rout-through of length 1. Other connect is routed 
to buses or segmented buses. DPSS has also been part of the MoM- 
3 Xputer compiler accepting and partitioning a subset of C subset 
into sequential MoM code and structural KressArray code. The 
more general CoDe-X approach [31] uses this MoM compiler as 
part of a partitioning co-compiler accepting a C language superset 
and partitioning the application onto the host and one or several 
Xputer-based accelerators. 

Tools for Colt [10] accept a dataflow description (below C 
level) for placement by a genetic algorithm and routing by a greedy 
algorithm (routing congestion is cured at run-time by wormhole 
reconfiguration). Data stream headers hold configuration data for 
routing and the functionality of all PEs encountered. 

Programming RaPiD[21] 
is done in RaPiD-C, a C-like 
language with extensions 
(like synchronization mechan- 
isms and conditionals to 
identify first or last loop 
iteration) to explicitly speci- 
fy parallelism, data movement 
and partitioning, RaPiD-C 
programs  may  consist  of 

manual placement and routing, an automated tool is provided, 
which  guarantees  to  find  a  mapping,  if  one  exists,  by 

several  nested  loops  de- 
scribing   pipelines.   Outer 

Fig. 7: Machine Paradigms. 

exhaustive methods which need much computation time. 
For Programming MATRIX [12] an assembly level macro 

language has been developed. Some work on P&R pointed out 
the original MATRIX’s weak points [30]. 

REMARC tools [15] allow concurrent programming of the 
RISC processor (by C using the GCC compiler) and the RA by 
adding REMARC assembler instructions. The compiler then 
generates assembly code for the RISC processor with  the 
REMARC assembler instructions embedded which are further 
processed by a special REMARC assembler generating binary 
code for the REMARC instructions. Finally, the GCC compiler 
is used  again  to generate RISC  instruction  code to invoke 
REMARC and its instructions embedded as binary data. 

Programming MorphoSys is  supported by a  SUIF-based 
compiler [16] for host, and development tools for RA. Host / RA 
partitioning is done manually by adding a prefix to functions to 
be mapped onto RA. The compiler generates TinyRISC code for 
RA activation. Configuration code is generated via a graphical 
user interface or manually from an assembler level source also 
usable to simulate the architecture from VHDL. 

3.2 Frameworks with FPGA-Style Mapping 
Computation-intensive algorithms for mapping onto 

FPGAs are well-known and can often be used directly for 
coarse grain architectures like for CHESS, Colt, KressArray, 
RaPiD (see fig. 6). All four use simulated annealing or other 
genetics for placement, and two use pathfinder for routing 
[29]. The KressArray DPSS (Datapath Synthesis System) 
accepts a C-like language source. The compilation framework 

loops are transformed into sequential code for address generators, 
inner loops into structural code for the RA. The compilation 
steps are: netlist generation from structural code, extraction of 
dynamic control, generation of controller code instruction 
streams   for   dynamic   control   and   generation   of   I/O 
configuration data for the stream units. The netlist is mapped 
onto RaPiD by pipelining, retiming, and P&R. Placement is 
done by simulated annealing, with routing (by pathfinder [29]) 
done on the fly to measure placement quality [32]. 

For Programming the CHESS array [17] a compiler [33] 
has been implemented accepting JHDL [34] sources and 
generating CHESS netlists. Placement is done by simulated 
annealing and routing by Pathfinder’s negotiated congestion 
algorithm [29]. Part of the work is not disclosed. 

3.3 Other mapping approaches 
Greedy algorithms are poor in  mapping to FPGAs. But, 

although Garp is mesh-based, mapping treats it like a linear array 
which allows mapping in one step by a simple greedy routing 
algorithm. RAW features only one communication resource, 
removing the wire selection problem from routing. Instead, the 
compiler schedules time multiplexed NN connections. CPU 
cores inside RAW PEs simplify mapping by loading entire 
source code blocks. PipeRench resembling a linear array and 
interconnect fabrics restrictions keep placement simple for a 
greedy algorithm. PADDI uses a standard P&R approach. 

Garp tools [13] use a SUIF-based C compiler [35] to generate 
code for the MIPS host with embedded RA configuration code to 
accelerate  (only  non-nested)  loops.  At  next  basic  blocks  are 
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generated and converted into hyperblocks containing a contiguous 
group of basic blocks, also from alternative control paths. Control 
flow inside a hyperblock is converted for predicated execution. 
Blocks, which cannot be mapped, are removed from hyperblocks. 
The resulting reduced hyperblock is then the basis for mapping. 
The next step generates interfacing instructions for the host, and 
transforms the hyperblock into a DFG (data flow graph). The 
proprietary Gamma tool [36] maps the DFG onto Garp using a tree 
covering algorithm which preserves the datapath structure, supports 
features like the carry chains. Gamma first splits the DFG into 
subtrees and then matches subtrees a with module patterns which 
fit in one Garp row. During tree covering, the modules are also 
placed in the array. After some optimizations the configuration 
code is generated (incl. outing [38]), assembled into binary form, 
and, linked with the hosts C object code. 

RAW tools [39] [40] include a SUIF-based C compiler and 
a run-time system managing dynamic mechanisms like branch 
prediction, data caching [41], speculative execution, dynamic 
code scheduling. The compiler handles resource allocation, 
parallelism exploitation, communication scheduling, code 
generation (for host and switch processors in each tile), and, 
divides execution into coarse-grain parallel regions internally 
communicating by static network, whereas intra-region 
communication uses messages. The phases are: pointer 
analysis [39] with data dependency  analysis and memory 
access generation (if known at compile-time), partitioning 
application data for distributed memory; space-time 
scheduling [40] for parallelization; address translation for 
caching by software. RAW binary is generated by the MIPS 
compiler back end. The RAW project aims more at parallel 
processing rather than reconfigurable computing and failed in 
finding a good automatic mapping algorithm [42]. 

PipeRench tools [23] [43] use the DIL single-assignment (SA) 
language for design entry and as an intermediate form. First, the 
compiler inlines all modules, unrolls loops and generates a straight- 
line SA program (SAP). After optimizations and breaking the SAP 
into pieces fitting on one stripe, a greedy P&R algorithm is run 
which tries to add nodes to stripes. Once placed, a node is routed 
and never moved again. P&R is fast by crossbar switch usage, 
coarse granularity, and, restriction to unidirectional pipelines. 

CADDI [44], assembler and simulator, has been imple- 
mented for PADDI. First a silage [45] specification is 
compiled into a CDFG (control /data flow graph), used for 
estimations of critical path, minimum and maximum bounds 
for hardware for a given time allocation, minimum bounds of 
execution time, and for transformations like pipelining, 
retiming, algebraic transformations, loop unrolling and 
operation chaining. CDFG to architecture technology mapping 
is straight-forward since all components are fixed and routing 
through crossbars is efficient. If several PADDI clusters are 
involved, a partitioning step comes before resource allocation, 
assignment, and scheduling. The assignment phase maps 
operations to EXUs by a rejectionless antivoter algorithm [46]. 

Compilation for Pleiades. Because of the complex design 
space created by the heterogeneous architecture, the 
application mapping problem is not yet solved completely. 

Commercially available platforms. Chameleon Systems 
uses co-compilation [19] (like known from earlier work [36] 
[43] [31] [47] [48]), combining compiler optimization and 
multithreading techniques, to hide configuration loading 
latency and list scheduling to find ’best’ schedule for a series 
of eBIOS calls. About mapping or compilation techniques for 
the MorphICs RA no information has been disclosed. 

4. Design Space Explorers (DSEs) 
Some development environments aim beyond compiling. DSEs 

(fig. 8 [42]) select one of many alternative solutions to meet a 
design goal meeting constraints or desired properties to optimize a 
design or a (by PSE) programmable platform. Guidance systems 
or design assistants are interactive DSEs giving advice during 
the design flow. Some DSEs avoid the status generation and 

 

Explorer System year source inter- 
active status evaluation status generation 

DPE 1991 [49] no abstract models rule-based 

Clio 1992 [50] yes prediction models advice generator 

DIA 1998 [51] yes prediction fr. library rule-based 

DSE for RAW 1998 [41] no analytical models analytical 

ICOS 1998 [52] no fuzzy logic greedy search 

DSE f. Multimedia 1999 [53] no simulation branch and bound 
Xplorer 1999 [9][42] yes fuzzy rule-based simulated annealing 

Fig. 8: Design Space Exploration Systems. 

provide only predictions etc. from a knowledge data base. 
Advanced DSEs provide status generation, e g. by expert 
system, and present advice like a choice of proposals. Non- 
interactive DSEs automatically generate a solution status from 
rule-based knowledge or fuzzy learning. 

4.1 Design Space Exploration 
Interactive design assistants are DPE and Clio (both for VLSI) 

and DIA. Including effect predictors and proposal generators 
DPE (Design Planning System) [49] (using an expert system), 
Clio [50] (using a hierarchy of templates) and DIA (Datapath- 
Intensive ASICs) [51] (targeting semi-custom ASIC behavioural 
level and based on encapsulated expert knowledge), generate a 
design flow by creating a schematic, a data flow graph, or a 
layout from a specification and area, cycle time, power, e.a. 
constraints and to improve area, power, throughput etc. 

4.2 Platform Space Explorers (PSEs) 
A PSE serves to find an optimum RA or processor array (PA) 

platform for an application domain by optimizing array size, path 
width, processor’s MIPS, number of ALUs and branch units, local 
SRAM size, data and instruction cache sizes, local bandwidth, 
interconnect latency etc. from requirements like chip area, total 
computation, memory size, buffer size, communication etc. 
Software or configware application programming is finally not 
part of exploration, but may serve platform evaluation. All three 
being non-interactive, the DSE [41] for RAW [14] featuring an 
analytical model, ICOS (Intelligent Concurrent Object-oriented 
Synthesis) [52] featuring object-oriented fuzzy techniques, and 
“ DSE for Multimedia Processors” [53] (DSEMMP) aim at 
automatic synthesis of a multiprocessor platform from system 
descriptions, performance constraints, and a cost bound and 
generate an architecture. . DSEMMP aims at shared memory with 
intel Strong-ARM SA-110 as a starting point. 

Xplorer, an interactive PSE framework [9] [42] has been 
implemented around the DPSS mapper [4]. This universal 
design space exploration environment supports both, optimum 
architecture selection (e. g. domain-specific) and application 
development onto it and includes several tools: architecture 
editor (to edit communication resources and annealing 
parameters), mapping editor (to change I/O port type, freeze 
locations of edge port, cell or cell group etc.), instruction 
mapper to change the operator repertoire, architecture 
suggestion generator [54], HDL generator for cell simulation, 
retargettable cell layout generator (planned, similar to [55]), power 
estimator (planned [56], similar to [58]). A cycle through an 
exploration loop usually takes only minutes, so that a number of 
alternative architectures may be checked in a reasonable time. By 
mapping the application onto it verification is provided directly. 

5. Conclusions 
Exploding ASIC design cost and shrinking ASIC product 

life cycles are a motivation to replace at least some of the ASICs 
by RAs for product longevity by upgrading [59] [60] [61]. 
Performance is only one part of the story. The design community 
is far away from fully exploiting the flexibility of RAs [34], 
supporting novel powerful techniques -directly in system 
jointly with all other components in real time, dramatically 
faster than simulation- for debugging, run-time profiling, 
verification,   system-wide   tuning,   run-time   API,   field- 
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maintenance, field-upgrades (also via internet) flexible self- 
monitoring functions by configuring unused parts of the RA. 
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This potential is largely unrealized 
although having been technically possible 
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compilers to replace CAD. A machine 
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DSP Algorithms; Proc. HICSS-26, Kauai, Hawaii, Jan. 1993. 
27. J. Rabaey: Reconfigurable Computing: The Solution to Low Power 

Programmable DSP; Proc. ICASSP’97 Munich, Germany, April 1997. 
28. D. Lewis: Personal Communication, April 2000. 

29. C. Ebeling et al.: Placement and Routing Tools for the Tryptich FPGA; 
IEEE Trans VLSI Systems 3, No. 4, December 1995. 

30. A. DeHon: Personal Communication, February 2000. 
31. J. Becker: A Partitioning Compiler for Computers with Xputer-based 

to  develop  and  machines  easier  to 
program - the success story of software 

Fig. 9: “Instruction Fetch”. Accelerators; Ph. D. dissertation, Kaiserslautern University, 1997. 
32. C. Ebeling: Personal Communication, March 2000. 

industry.  But  “v.  Neumann”  does  not  support  soft  datapaths 
because “instruction fetch” is not done at run time (fig. 9). Instead 
of a program counter we need a data counter [63] (data sequencer 
[64]): the new “Xputer” machine paradigm for soft hardware (fig. 
7) [7]. Instead of a “control flow” sublanguage a “data stream” 
sublanguage defines data goto, data jumps, data loops (also nested), 
parallel data loops (using multiple data counters) like by the MoPL 
language [65] - easy to learn by its similarity to control flow. 

Reconfigurable platforms and their applications are heading 
from niche to mainstream, bridging the gap between ASICs and 
microprocessors. It’s time to revisit R&D results and to derive 
commercial solutions: at least one promising approach is 
available. It is time for you to get involved. 
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